The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches.
نویسندگان
چکیده
Mass spectrometry-driven BLAST (MS BLAST) is a database search protocol for identifying unknown proteins by sequence similarity to homologous proteins available in a database. MS BLAST utilizes redundant, degenerate, and partially inaccurate peptide sequence data obtained by de novo interpretation of tandem mass spectra and has become a powerful tool in functional proteomic research. Using computational modeling, we evaluated the potential of MS BLAST for proteome-wide identification of unknown proteins. We determined how the success rate of protein identification depends on the full-length sequence identity between the queried protein and its closest homologue in a database. We also estimated phylogenetic distances between organisms under study and related reference organisms with completely sequenced genomes that allow substantial coverage of unknown proteomes.
منابع مشابه
The Power and the Limitations of Cross-Species Protein Identification by Mass Spectrometry-driven Sequence Similarity Searches*□S
Mass spectrometry-driven BLAST (MS BLAST) is a database search protocol for identifying unknown proteins by sequence similarity to homologous proteins available in a database. MS BLAST utilizes redundant, degenerate, and partially inaccurate peptide sequence data obtained by de novo interpretation of tandem mass spectra and has become a powerful tool in functional proteomic research. Using comp...
متن کاملPlenary Lectures L2.1 Homology driven proteomics and its implications for animal and plant biology
Homology driven proteomics enables the biochemical characterization of unconventional, yet biologically interesting model organisms from a variety of taxonomic classes, including plants, fungi, insects, reptiles, among many others. Confident identification of unknown (i.e. not present in a database) proteins relies upon often marginal similarity between sequences of fragmented peptides and know...
متن کاملProteome analysis of Cryptosporidium parvum and C. hominis using two-dimentional electrophoresis, image analysis and tandem mass spectrometry
Until recently, Cryptosporidium was thought to be a single species genus. Molecular studies now showthat there are at least 10 valid species of this parasite. Among them, two morphologically identical species, C.hominis and C. parvum are the most pathogenic identified to date and share 97% of identical genomes.Post-genomic analyses is therefore necessary to explore further the...
متن کاملSequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing.
LC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, combined with data processing, stringent, and sequence-similarity database searching tools, was employed in a layered manner to identify proteins in organisms with unsequenced genomes. Highly specific stringent searches (MASCOT) were applied as a first layer screen to identify either known (i.e. present in a database) proteins, or un...
متن کاملRapid validation of protein identifications with the borderline statistical confidence via de novo sequencing and MS BLAST searches.
Protein identifications with the borderline statistical confidence are typically produced by matching a few marginal quality MS/MS spectra to database peptide sequences and represent a significant bottleneck in the reliable and reproducible characterization of proteomes. Here, we present a method for rapid validation of borderline hits that circumvents the need in, often biased, manual inspecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2004